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Abstract 

By studying the partial wave expansions of multiparticle 

amplitudes we show that analytic properties in complex helicity 

are just a reflection of the familiar analytic structure in 

angular momentum. he give a criterion which~determines 

when an asymptotic behaviour in an azimuthal angle (conjugate 

to the helicity) can be reached in a physical process. Our 

discussion centers around the five and six point‘functions; the 

latter, being relevant for single particle inclusive processes, 

is considered in detail. One of the interesting features of 

analytic structure in h is that it depends in detail on what 
. 

other variables one chooses in addition the azimuthal angle 

conjugate to it. That singularity structure is found by 

examining the partial wave analysis appropriate to the chosen 

variables. Finally, a discussion of signature in many particle 

amplitudes is given. 
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I. Introduction 
’ 

In the study of the asymptotic behaviour of hadron amplitudes it is 

possible to isolate processes in which one of the “external” objects is a~ 

Reggeon; namely, a “particle” both off the mass shell p2=m2 and off the 

spin shell 
2 a(p ) = integer or half-integer. The simplest scattering, 

of course, in which a Reggeon makes its appearance is elastic or quasi- 

two body scattering. Here one measures a Reggeon - two particle vertex 

function as the factorized residue of a pole in the complex J-plane. In 

_~ 

; 
_/.~ 

processes involving more particles one can discuss Reggeon-particle scatter- 

ing and production. 1) A degree of freedom suppressed in elastic processes, 

thehelicity of the Reggeon, begins to play a role in multiparticle problems. 

One may view its appearance either as reflecting~the non-trivial dependence 

on azimuthal angles which enters in five, six,... point amplitudes, or one 

may recall that in four or more line amplitudes involving particles with 

spin, the dependence on helicity becomes significant. 

These azimuthal degrees of freedom, 4) invite one to inquire into the 

behaviour of multiparticle amplitudes as some co+ becomes asymptotically 

large. 2) Such behaviour will be governed by the analytic structure in the 

variable conjugate to e; namely, the helicity. One is led thereby to 

investigate the singularity properties, poles and cuts especially, in 

complex helicity. From the outset it is clear that singularities in the 

helicity must he thought of as on a somewhat different footing from those 

in angular momentum or invariant energies. This difference comes from our 

understanding of particles as being classified according to irreducible 

representations of the Poincare’ group. Under such a classification the spin 

J and (mass) 2=p2, apart from internal quantum numbers, are sufficient to 
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specify a state. i\hen we consider S-matrix singularities in J or p2, or 

together as for Regge poles,uith J = a(p2), we remain within this Poincar; 

invariant scheme. However, helicity has quite a different character in the 

classification of states. It labels the components of a representation and 

under a Lorentz transformation can change or be mixed up with other helicities. 

In short it is not a quantity that provides a Lorentz frame independent charac- 

terization of a state and to regard singularities in helicity variables as 

somehow “dynamic” necessitates a major reorientation in our views of what 

constitutes a particle. We will argue in this paper that ,such a drastic 

move is not called for, and that, indeed, singularities in helicity are 

kinematic reflections of familiar analytic structure in angular momentum. 

The way in which this comes about will be given in detail in the discussion 

of the five point function found in the next section. The relevant feature 

is the isolation of a T(X-J) in the double Sommerfeld-Watson transform in 

angular momentum J, and helicity, A. This factor will insure that a 

pole, say, at J=a in the angular momentum is a series of poles in X at 

A = CL, o-l, . . . . In this way we see directly the “kinematic” manner in 

which J-plane structure goes over into X-plane structure. 

he will then argue that the isolation of these kinematic gamma functions 

is enough to determine the analytic structure in h in multiparticle amplitudes, 

In particular rue will study the six point function in a configuration appropriate 

for learning about the three Reggeon vertex, 3) and during this study we will 

develop a criterion for deciding when a certain asymptotic azimuthal angle 

limit can be reached in the physical region of an S-matrix element. This 

becomes particularly important in the investigation of inclusive processes. 
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It has been known to many people 4) that there are singularities in 
T 

X at 0, u-l, . . . and, in a sense, our discussion of that point is meant 

to give a stronger motivation than we have found inthe literature. Particular- 

ly relevant to the present work are the papers of .IVhjte 5) and IVeis6), the 

latter of which has certain’ly stimulated many of our ideas here. Beyond this 

pedagogical contribution, the discussion of more general configurations than 

five or six point functions and the criterion for physical region asymptotic 

behaviour in azimuthal angles may have some’value in further study of multi- 

particle production. One of the additional points we will emphasize is that 

the detailed structure in the A-plane will depend on exactly what other 

variables one chooses in addition to the + conjugate to X. The selection 

of those variables will be connected with various multiple partial wave 

expansions whose significance will be given by the kind of physical information 

one wishes to extract from the multiparticle amplitude in the coso + m limit. 

II. Relating Angular Momentum and Helicity Structure, 

In this section we will first give an heuristic discussion of the manner 

in which certain kinematic factors in partial wave expansions enable one to 

determine where singularities in helicity, X , lie* when one has specified 

the analytic structure in the angular momentum J. Our procedure will be to 

consider in detail the five point function in the kinematic configuration show 

in Figure 1. All external particles are spinless, and for simplicity we will 

take them to have equal mass, m. 

h’e want to make a partial wave decomposition of this amplitude which 

enables us to look at the analytic properties of the helicity associated with 

a Rcggeon of mass tl = Qi = (p +p ) 2 
1 3 

. To make this partial wave analysis let 

us sit in a frame where 
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I P4 = Cm, 0, 0, 0) , 

and the other vectors are chosen to be 

Qi = 5 (cash $1~,0,0, sinh Gi) i=1,2, 

= Bzbi) ( +A% 

(11 

(21 

PI = B,($,) (E1,pl sine1 cowl, p1 sine1 si+, 

PI cosB1) , (3) 

and 

and 

p2 = Bz(Ji2) (B2,p2 srnB2cos+2# 
. 

p2 sme2sm42, p2c0se2) (4) 

pi =m and Ei = 5 / 2 , (5) 

cash $I = (m2~ + tl i t2)/2mJiT , (6) 

cash $, = (m2 + t2 - t1)/2m% . (7) 

IVe have chosen the Qi time like so we may make an ordinary O-(3) partial 

wave analysis. The Br($) is a z-boost through the indicated angle. 

These kinematics define a set of six variables cosB1, case 
2’ t1’ t2> 

4 = 4,-o, and 41+42 on which the amplitude may depend. Rotational invariance 

of the scalar amplitude forbids the appearance of the angle e1+e2, SO we have 

the’five point function given in terms of the first,five variables. IVe will 

for the moment, pretend that $1 and $2 may be treated independently and 

will impose this important ‘constraint soon. Suppressing all variables except 

e1 and 
41 

we exhibit the dependence of the five point amplitude on them by 

writing the partial wave expansion 
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% 

A5k0se1,41) = 

x1 

2J1+1) ‘P, ~(cosal) 
iX1bl 

e 
1 x 

T(Jl+X1+l) 

T(Jl-X1+1) “JIX1 ’ 

where 

;kcx) = r(J-h+l) pXcxl 
J T(J+X+l) J (9) 

= (l-x2) h’2 

2x r(h+1) 
,2Fl(.1-h, J+h+l; h+l; (10) 

and Pi(x) is the usual associated Legendre polynomial. The purpose in taking 

out the designated gamma functions is most apparent in Eq. (10) because one can 

see from known properties of the hypergeometric function that there are no 

associated J. X singularities in ,Pi(x).‘) 

Furthermore, using the orthogonality properties of the J and the PA 

normalization integral 

+1 
I dx [+)I2 = 2 r(J-x+1) 

2J+1 r(J+A+l) ’ 
-1 

we find +I 2n 
1 

MJIXl = ‘i I 
-x1 dx PJ (i) 

I 
cbl e 

-iA,+, 
AskAl) > (12) 

-1 l 0 

where x = cosa 1’ The important point to notice is that no associated J1 and , 

x1 singularities are present in the partial wave amplitude so defined. They 

all reside in the explicit gamma functions. 

Now we make an heuristic Sommerfeld-Watson transform ignoring for the 

moment all questions of signature. 8) Write (8) as 
i., 

. 
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AS(cos~1,01) = ( J i, I (2J1+1) e 
%$l x 

X1=0 Jl=Xl X1=-- 1 1 

(cosy) 
r(Jl+Xl+l) 

r(Jl-X1+1) MJ1ll ’ (13) 

to separate hl 1. 0 and Xl < 0. In order to handle X; < 0, note that 

Qx) = r(J-X+1) --i 
I- (J+A+l) PJ (x) (14) 

= r(J-h+1) 
2 -A/2 

r(J+x+l) 2F1 (J+X,J-X+1; -X+1; 9 )(:-” ) , (15) 
2 r(-x+1) 

for x < 0 . 

and defining +l 

Mi(J,h) = + 
I 

-A 2n d$ 

I 

-iX+ 
dx PJ(x) ze ’ As(x,&) (16) 

-1 0 

for the regime X 2 0, and for X < 0 

+l 

ML(J,X) = + 
I 

2n d$ 
dx P;‘(x) 2-;; e 

I 

-iA$ 
’ As(~,+l) , (17) 

-1 0 

neither of which has explicit associated J h 
> 

singularities, we nay write 

As(~osel,+l) = 
( 2Jl+l) PJ - ;l(x) eiv1 

r(Jl+xl+l) 

X1=0 Jl=Xl 
“R(Jl’xl) r(Jl-hl+l) 

+ ,:i J c”, (2J1+1) Gus’ eixl’l M 
r(Jl-x1+1) 

L (J ,I 1 1 1 r(Jl+hl+l) . (18) 
1 

_m 

1 
1 

Now we make a double Sommerfeld-Watson transform in Xl and Jl 

As(~~~el,O1) = I dX1 n dJ1 l? 
2ni sinnX 

x 

C’ 1 I 2-x sinn(Jl-hl) 

Al cJ1 
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x C-e 
I@1 5 

1 (2J1+1) -zl 
r (Jl+xl+l) 

1 
(-') "RcJl'?l) r(Jl-X1+l) - 

-’ I dhl PI 
5-z sinnX I 

CIJ 

C’ l C’ 
& sink(;l+Al) x (2J1+1) +-xl x 

5 J1 
. 

ML(Jlshl) 
T(J1-X1+1) Ql Al 

r (Jl+hl+i ! : C-e 1 (19) 

where the contours are the standard ones needed to reproduce the sums in (18). 

Noting now that 

1-A 
-ll 

sinn(J1-Al,) 
= r(xl-Jl) T(J ,1+1) , (20) 

and 

ii 
sin[-n(Jl+hl)] 

= r(-xl-.Jl) .r(J1+xl+l) , (21) 

we may cast (19) into 

As(~osel>Ql) = - 
f 

dX1 
I 

dJ1 
2i siniiXl 2ni r (X1-Jl)r(hl+J1+l) x 

c1, cJ1 
(2J1+1) PA1 J1 C-4 MR(J1,X1) C-e 

i+l Al 
1 

+ I ~dhl dJl. --A1 Ql Al 

5 2isinrrXl I 
~~ R-X1-Jl)r(Jl-X1+l) (2Jl+1) PJ .(-xl C-e 1 ML(J1,X1l. 

1 
3 1 

1 (22) 

If there were no other singularities in X1, we would now be able to 

conclude that a pole of MR(J1,X1), Say, in Jl at ol(tl) would, through 

the kinematic gamma functions yield strings of poles at 

x1 = al(tl). y(tl) - 1, . . . (23) ’ 

and Ai= -aa - i, -ol(tl) - 2,... , (24) . 
& 
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from the first term in $(22). In the second term, which involves the left hand 
. 

X1 plane, a pole in b1 (J L l,A1) at Jl = ol(tl) gives rise to singularities in 

x1 
integration at 

hl = -al(tl). -al(tl) + l,.... wd 

and Al = al(tl) + 1, ol(tl) + 2, . . . . (26) 

For $1 -+ +im we want to pick up the poles from the second (first) term of 

(22) which lie furthest to the left (right) in the Xl plane. Since MR and 

ML are the proper functions to be continued in the right ‘(left) half hI 

planes, 8) this is appropriate. 

Because of our construction so far, were there no kinematic constraint on 

“1 
that it only enter AS in the form $=ol-$2, we would be strongly motiv- 

ated to say there are no further singularities from NJ x in Xl. In the 
1 1 

representation (22) of AS(ol,cosG1) we would then conclude that the asymptotic 

behaviour in e 
Ql 

with the other specified variables fixed is (CW 1 
a1 (tl) 

1 

for al(tl) 2 - l/2 plus O(kos~,) 
al(tl)-l 

1 * 

However, the invariance under z-rotations of the scalar function AS 

tells us that if we go back to (8) and restore e2 and 0, and write a 

double partial wave expansion to exhibit their dependence also 

+J +J 

As(~osO1, cose2,01’~2) = ; Y I1 I2 x 
Jl=O J2=0 Xl=-J1 X2=-J2 

(2J1+1) (2J2+1) e 
iAIQ1-i A2e2 -A1 

pJ1 
-x2 (cosy) PJ 

2 
(c0se2) x 

r(Jl+Xl+l) r(J2+X,+l) 
(27) 

‘.‘. 

then X1 must equal i2 so only $ = +1-?2 appears. This has the implication 

that iiwarities in both J1 and J ,. 2’ 
the angular momenta conjugate to 01 

. 
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and O2 
are transmitted to via the kinematic gamma functions we have 

5 

discussed ant length. 

This lesson is well known, 2). we know, but we have belabored it here to 

show how it is that the rotational invariance ,-.I’ A3 or equivalently the 

covariance of the central (Q, Q, p4) vertex in Figure 1 links together the 

otherwise independent helicities hl and Xt. We are informed thereby to 

think of Xl and its associated o1 as not connected with the external 

orientation of the plane of p1 and p3, but to attach it to the central 

vertex to exhibit its meaning. 

By going to particle poles in 
? 

‘and t2 in the function A3, one 

sees directly that x1 and X2 are properly interpreted as the helicities 

of the states with spin J1, mass Jf; or spin J2, mass Jf;, respectively. 

The rotational invariance of A3 informs us that we may not separately con- 

tinue in hl and X 2’ even though we may, of course, do so in J1 and J2. 

Also by taking, say, just t2 to a pole of spin J2, helicity h2 we see 

that the continuation of the resulting four point function: Q2,(spin J2, h2) + 

P4 + P1 + P3 in the angular momentum Jl does not necessitate, indeed does 

not allow, a continuation in the helicity h.l associated with J1 for it is 

constrained to be the external helicity h2. It is in this manner that we 

see why one never encounters questions of complex helicity in two-to-two 

processes. . 

Returning to Eq. (27), if we define FR and FL in analogy with (16) 

and (17), 

+l +l‘ 

F R L(J1,J2,A) = $ I 
dxl i;‘(x ) 1. x 

1 

1 2 I dx2 :;‘(x 2 ) 

-1 -1 2 

2n 

I 
d+ 
xc -ih’ As(x1,x2,0) , 

0 

(28) 
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we may write the triple Sommerfeld-IVatson transform 

AS(cosOl, cos02,$) = 
: 
,5 cJl cJ2 

P(~-Jl)r(~-J2)P(X+Jl+l)P(~+J2+1) (2J1+1) (2J2+1) (-ei”jX Fg(J1,J2,X) x 

x PQ-xl) P; 
2 

(-x2) + 

+ I dJl 
2ni 

3 1 

dJ2 
2ni 

x 

x (2J1+1) (252+1) (-ei”)’ ‘;” 1 C-x,) ‘;;i-x2) PL(J1,J2,U. 

Now we have exhibited the dependence on t11,s2 and $ = $l-+2 and have 

extracted all the kinematic gamma functions from the partial wave amplitudes 

FR L(Jl,J2,“) which may be continued in the right half (left half) h plane. 

We are strongly urged to assume that these functions have no singularities in 

)\ and thus learn that the asymptotic behaviour in o is completely determined 

from the “dynamical” poles and cuts in J, 9) and J2- This assumption, which 

is very natural in the light of our remarks about the Poincare’ group above, 

is born out in model calculations where the simultaneous , x 

fixed has been studied:‘) 2 

and $ 

asymptotic behaviour with t 1’ t2 

Perhaps it is worthwhile once more to repeat the procedure we have followed 

before going on to more complicated, albeit physically more interesting examples. 

IVe chose from the outset a kinematic configuration indicated by the “tree” graph 

of Figure 1 and designated more precisely by the kinematics (l)-(7) in the rest 

frame of particle 4. IVe then argued at length that to find the singularities 

in the helicity hl, conjugate to 91, . which determine the asymptotic 
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iO1 
behaviour of A5 as e, + m , one must write a multiple partial wave 

expansion which exhibits all the constraints on - xl coming from the Lorentz 

invariance of A 
5’ The partial wave expansion is, of course, suggested 

directly by both the tree graph and the kinematics and must be carried out 

in a frame whj~ch guarantees that 01, 62’ $1’ $2 have their interpretaiion 

as polar and azimuthal angles, so we are confident that their conjugate 

variables are angular momentum and helicity. 

This last remark is relevant for the question: what is the behaviour 

of A as 
5 cos$ -+ m with case 1’ c0s.e 2’ tl and t2 fixed? This limit is 

not accessible in any physical region of the five point function, as we will 

discuss at some length below, but one may ask it. If we define the energy 

2 variables s = (p,+p,) , sl = @3-p,)‘, and s2 = h,-P,)2, then this 

limit corresponds to s + - while sl, s 
2’ tl’ and t 2 are fixed. From the 

point of view of the ,s,t channel invariants, our question would seem to 

have no answer for why should (co~$)‘(~l) appear rather than (cos+)o(sl) 

or even (cos$)‘(“l) where u1 = (p,-p4)‘? That’ is, why, from the point of 

view of channel invariants is the tree graph of Figure 1 relevant to the limit 

s-t- , t1, t2, Sl’ s2 fixed?‘) 

Our answer to this question is that in the limit COS$S + m , coso 
1’ case 2’ 

5’ t2 fixed, the four invariant dot products pl*p2, p1*p5, p 3 *p 2, and 

pz’ps all become infinite, while the other six possible inner products among 

the momenta remain finite. The only choice of tree graph for which 4 remains 

an azimuthal angle and for,which these, and only these, inner products are 

infinite in this limit are Figure 1 and its trivial variations gotten by inter- 

changing pl and p or 
3 p2 and p 

5 or both. To bc more precise in what 

we mean by tree graph, let us say that the crucial feature is that it defines 
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a way of choosing kinematics so that if p. 1 and p. 
I 

as a pair connect to 

Qij = pi - pj. then we make a partial wave expansion in the polar and 

azimuthal angles Oij and $ij of the plane of pi 
and pj 

and look for 

poles in the conjugate variable Jij of Bij and J.. (Qij2). 
11 

If for A5 we had chosen 4 to be the angle between the planes of 
. 

(pl p,) and, say, (p, p,), then in the limit cos+ + - , we are not 

Plcklng Out ~1.p~~ p2’p3, ~1.p~ and p2’p5 ? - as before. So a partial 

wave expansion which had this interpretation would be inappropriate for 

the limit we desire, and we return to Figure 1 as the only available tree 

graph (including again trivial pl ++ p3, p2 ++ p5 permutations). 

Another observation in this regard is that with our parametrization 

when + -c m so 
p1 and ~3 “move away” from the cluster p2 p5 p4, 

the fact that p4*p1, p4*p3 and (p2-p5)*p1 and (p,-p,) ‘p3 remain finite, 

singles out the pair p2 p5 and the single particle p 
4 as the correct 

subclustering. Again we are led to Figure 1. 

Such a line of thought leads us to expect that as ei$ -f +m with 

c0se 1, c0se 2, tl and t2 fixed, the function A5 behaves as 

Ag(C0Se1,C05e2,tl,t2,~) - (-ei’) "1%) x f 

P-=- 
1 

cosei,ti fixed 

+(-e 
i~102(t2) 

f2 ’ (30) 

where the fi are functions of the fixed variables while ai > 0, are 

the right most poles in the J. 
1 as they appear in the representation of A 

5 

by Eq. (27). This suggestion is rather hard to verify in models of particle 

production since the limit in question does not occur in the physical region. 

(The dual resonance model may provide a useful testing ground). When we 
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come t’o the six point function, however, the limit analogous to this can 

occur in the physical region and Cq. (39) then has physical ‘content. With 

that we close our discussion of the five point function and proceed. 

III. Azimuthal Angle Limits of the Six Point Amplitude 

IVe turn now to a discussion of the six point function, Ao, concentrat- 

ing onthe kinematic configuration in Figure 2. This will be appropriate for 

..the exposition of the triple Reggeon vertex 3) and plays a central role in the 
: 
discussion of single particle inclusive reactions near the end of the physical 

region. 10) 

Our procedure will be to make a multiple O(3) partial wave expansion 

of A6 and, as we have done for As, to write Sommerfeld-Watson transformat- 

ions to yield integral representations useful for continuation to the crossed 

channel. Since we encounter for the first time a vertex with three space- 

like momenta (Ql Q, Q,) we will have to distinguish between two different 

kinds of partial wave expansion depending on the sign of the triangle fun&tion 

A(Q,', Q,', Q,‘) = (Q12+Q22-Q32)2 - 4Q12Qz2. lVe shall first discuss the 

kinematics for the process p1+p2+p3 + pi+p;+pj as indicated in Figure 2 

and then give an heuristic argument as to how we may use the O(3) expansion 

indicated by Figure 3 and analytically continue to the reaction under con- 

sideration. 

There are two cases to be distinguished 3) 

(1) A(tl,t2,t3) ’ 0 ‘, (31) 

and (2) A(tl,t2>t3) < 0 , (32) 

where ti=Qf . If the ti are either all positive or all negative, we may 

be in case (1) or case (2). If only one of the ti is positive or negative, 
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we arc fixed in case (1). To see the significance of each case, let us 

consider them in order. 3 First suppose all ti > 0, and A(tl,t2,t3) > 0. 

Then we may sit in a Lorentz frame where Q, is along the time direction 

Q, = (~3,0Ao), (33) 

and 

. 
Q, = BZhl) (+',O,O) , 

Q, = Bz(n2) (~2,'L'W , 

sinhnl = 
JA itl,t2;t3) 

,zJtl Jt, ’ .: 
(36) 

(37) 

The role played by A(tl,t2,t3) is expli~citly shown here. Were it negative, 

we would not be able to orient the vectors Ql and Q, in the t-z plane 

by real z-boosts from their rest frames. 

The set of vectors (33)-(35) is invariant under a rotation about the 

z-axis, and this will lead to a conservation of the usual helicity at the 

central vertex. As we have seen in the five point function of Section II 

this constraint means that analytic structure in, say, Xl, the helicity 

of the “state” with momentum Ql, will be related to the analytic structtire 

in J 2 and J 3’ 
the angular momentum of the states with momenta Q, and 

Q3J as well as to the analytic structure in Jl. If all the ti are 

negative with A(tl,t2.t3) > 0, a similar analysis may be presented. 3) 

Suppose we are now in case (2). To reach this take all Qi space- 

like, and proceed to a frame where Q, is along the z-axis 

Q, = (O,O,O, J-t31 1 (38) 
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We may orient Ql and Q, in the x-z plane 

Q, = Ry(el) (o,O,O, J-tl) I 

Q2 = Ry(e2) (O,O,O, J-t,) , 

where Ry(e) is a rotation about the y-axis by 8, and 

‘sine = 
htl,t2>t3) 

1 

(39) 

(40) 

sine =- ktlJ2,t3) 
2 2-3 * 

(42) 

Because we can choose the orientation of the vectors Ql and Q, in 

the x-z plane, the set of momenta (38)-(40) is invariant under a y-boost, 

which is a non-compact operation, rather than a z-rotation, a compact 

operation, as in case (1). This invariance means that the “boost helicities” 

,.ll) 
1 conjugate to a y-boost angle will be conserved at the (Q, Q, 9,) vertex, 

and the analytic structure in the Xi will reflect the singularities in the 

Ji entering the vertex. 

It his important to note that because in case (2) real y-boost angles 

have replaced real z-rotation angles as the azimuthal variables, we expect 

to be able to reach asymptotic limits in a physical region of A6 by allow- 

ing these y-boost angles to become large. The explicit behaviour of A6 in 

these limits will be determined by the singularity structure in the boost 

helicities, and that structure is app.arent in the multiple partial wave 

expansions analogous to (29). 

In the following we will make a triple O(3) partial wave expansion of , 

A6’ 
choosing the Qi time like, and give an heuristic argument as to how this 

is to be applied in the regime ;b~here A(tl,t2,t3) < 0 and the QI < 0. 
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A crossed-channel partial wave expansion can be given directly for the physical 

case where the Qi are ‘spacelike and A(tl.t2,t3) is negative. 

First we establish the kinematics for Figure 2 which are relevant for the 

three-to-three scattering pl+P3+(-‘Pi) -t (-P,)+Pj+Ph whose forward discontinuity 

in the missing mass variable lv 
2 

= (Pl+P3-Pi) 
2 yields the single particle inclus- 

ive cross section for pl+p3 -t p; + missing mass W. 12) 

All of the Qi are spacelike for the six point function described, and 

in the inclusive Process t1=t2 while t3=0. If we evaluate A(tl,t2,t3) for 

tl=t2 -c 0 and t3 + 0 from below, then 

A(tlJ2J311t =t = t3(t3-4tl) , (43) 
1 ? 

and we see that the A function goes to zero from below, and therefore case 

(2) is appropriate. 

We specify the four vectors pi, pi and Qi in a frame F3, where 

Q, sits along the z-axis and Q, and Q, are in the x-z plane; that is, 

we employ Eq. (38)-(42) .3) In F3 we give pl by taking a standard p1 vector 

qs = (El,O~O~ql) (44) 
. 

in a frame where Ql 7 (O,O,O, 3) and parametrize it by the SO(2,l) 

little group element 

P,(X,B Cl’ @,I = By(xl) Bx(S1) RZ(4,) (45) 

which takes it to another frame where 
Ql 

is solely along the z-axis. Then 

by performing a y-rotation by the e1 of Eq. (41) we reach F3; that is, 

P;” = ky(el) g,(x,. 51, $1) ~1’ (46) 

Further it is easy to see that 
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El = m , 41 = J-tl ~, (47) 

where m is again chosen as the common mass for all external spinless particles. 

In exactly the same fashion we parametrize p3 and p2 

and 

with 

and 

F3 
P2 = Ry(e2) g,(x;, E2, @,I P; 

F3 
p3 = g3(x3, c39 $3) Pi 8 

Pi = (Ei,O,O,qi) , 

Ei = AT- , ‘qi z J-fi . 

(50) 

(51) 

Since we have spinless external particles, there is no dependence of 

A6 on the z-rotation angles $i. That leaves us with nine variables ti, 

Xi’ and Ci i=1,2,3, one of which is redundant. Nriting out A6 as a 

function of the momenta 

A6 (Ry(el) By(xl) Bx(S1) P; 9 By(x3) B;Kl) P; t 

Ry(e2) By(x2) Bx(f2) P;) t (52) 

and remembering that it is invariant under y-boosts, we see that A 6 depends 

only on x1-x3 and x2-x3 and not all three x.. 1 This is precisely the 

analogue of the restriction on A 
5 in previous section to depend only on 

To go from frame F3 to the regime where the Qi are time like we 

make a complex Lorentz transformation Da(y) and continue the ti to 

positive values. 13) 

F3 B,(g) Q3 = (Jf5’0’0’0)‘. (53) 
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Under this Lorcntz transformation the operations B 
Y’ 

Bx, R nc. :‘! 
Y 

for the kinematics in case (2) behave as 

and 

Bz(- g) By(x) Da(%) = Rx(-ix), 

Bz(- $$ Bx(C) Ba($) = Ry(iS) , 

Bz(- G) Ry(0) B,(q) = Bx(ie) . (56) 

This suggests that x-rotation angles play the role of azimuthal angles in the 

multiple O(3) partial wave analysis we are now ready to carry out. 

With these hints we parametrize the six Point amplitude of Figure 3 as 

follovs: work in the frame F 
C 

where 

Q, = ($,O.W , (57) 

and 

with 

Q,'= Bx(eA) (~JLW') 9' 

Q, = Bx(eB) (~A’L’J) > 

(53) 

(59) 

sinh 8 
&fA,tB>tC) 

= A 25% ’ ’ 
(60) 

and and sinh BB = - sinh BB = - 
~A(tA>tBJC) lA(tA>tB,tC) 

‘$5 * ‘$5 * 

We parametrize pA We parametrize pA by an O(3) little group element by an O(3) little group element 

g,(x,, CA’ 0,) = Rx(xA) RyEA) RZ(6,) . 

which takes it from a standard vector 

(61) 

(62) 

Pi = (EA>O,O>qA) (63) 

in a frame whcrc Q, = ($,O,O,O) to another frame where QA is purely 

along the time axis. To take it to FC we apply Bx(OA) so 
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FC 
PA = Bx(eA) Rx(xA) R,KAl RZtOA) Pi (64) 

Clearly we do the same for PB and pC finding 

FC 
PB = Bx(~B),Rx(~B) Ry(SB) KZ(+,) P; , (65) 

and 

with 

FC 
c- 

PC = Rx(xC) Ry(CC) RZ($,) ,P; 9 (66) 
*<.: 

Ej 
j=A,B,C . (6;) 

Once again the spinlessness of the external particles tells us that A6 does 

not depend on the o., 
3 

and the invariance of A6 under x-rotations reminds 

us that A6 depends on the eight var’iables: t. 
7’ 5 

for j = A,B,C and 

‘A-‘C and xB-xc. 

With these kinematics in hand we can carry out the triple O(3) partial ’ 

wave analysis on A6. The only tricky point is to relate the rotation functions 

in the basis where Jx is diagonalized on the left and Ja on the right, which 

is natural for the O(3) labelling Rx(X) Ry(S) Rs(O), t,o the usual Ra R R 
Y = ,,, 

functions. By noting that Ry(- 5) Ra(X) Ry($) = Rx(X) we can give the partial 

wave expansion 

A6 (Bx(BA)Rx(XA)Ry(SA)Pi , Rx(XC)Ry(tC)PES Bx(eB)Rx(XB)Ry($,)Pi = 

+J. 

= n y 1 ’ (2Jj+I) ;:;j;;j;;; 5:: (cos(Sj + ‘;) ) x 
j=A,B,C Jj=O Xj=-Jj J I 3 

x exp(i XAXA - i XBXB - i XcXc) EI(J X J h J X t t t ) 
A' .A’ B’ 8’ C’ C’ A’ B’ C . (68) 

In order that A6 depend only on the differences XA-Xc and Xb-Xc, we 

require XC=XA-hB. Remembering from our discussion of A5 that we must, 

even beyond considerations of signature, continue separately positive and 
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negative helicities, we divide the Xj sums in (68) into six regions 

.I x*1.0, hB,O, xc= A* -x,20 

II A* LO, XB 2 0, xc < cl , 

III A* L 0, XB < 0, ICI-0 t 

IV lA < 0, hB < 0, xc < 0 , 

v A* < 0, XB < 0, i,lO 9 

and VI A* < 0, XB 2 0, AC<0 . 

9 (69) 

(70) 

(71) 

(72) 

(73) 

(74) 

IVe must define different amplitudes to be continued into the right half 

or left half X plane for each helicity. We will designate by a subscript Rj 

or Lj the amplitude continued in the right or left half plane for each 

j = A,B,C. Thus the quantity MR R R will be continued into the right hand 
ABC 

plane of AA, X8, and XC; its definition in terms of A6 is 

"RARBRC (JA'xA' JB 'B" JC C) 'hA-XB,XC 

+l +l 
1 

i 
'"; (x,, $ j1 dxB f';," (x,1 $- j dXA '3 

-k =-- 
2 dXC 'J 

-1 -1 -1 

c (xc) x 

211 dxA e 
-ixAxA 2rr 

dxB e 
+iXBxB 

x 
2-i-Y f- 2-K 

A6(xA,xB,xC,xA,xB,xC = 0) , 
0 0 

where xj = cos(Sj + +). Amplitudes to be defined in left half planes 

defined using fi;" as in (17) and (28). 

(75) 

are 

he may follow all the steps in the discussion of AS above to write 

Sommcrfeld-Watson transforms for each of the six regions. Since there seems 
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to be no particular point in writing out six such long formulae, we will ~, 

give the transform for region I only, leaving the others to’the patient 

reader. We choose to eliminate XC in the writing, and find 

ARegion I 
6 (x *, X*. XC’ x*-xc* u,-xc1 = 

- I dhB 

2i sinniA I 
d)ig -i”r 1 3 (2Jj+l)r(ij-Jj) x 

2i sinniB j=A 
cJ 

2ni 

j 

-‘j 

xP(Xj+Jj+l) PJj (-xj) [-e 
i (x,-x,) AA 

1 1-e 
-i (x,-xc) XB 

1 x 

x MRARBRC (JAXA, JBXBs Jc XA-Xn) , (76) 

where XC is to be set equal to hA-XB in all expressions, and 

II 
0 Xj = cos (Sj+ :) = -sinCj. 

,C‘ The partial wave coefficients MR and Ml, are taken to have only 

dynamical poles or cuts in the Jj and to have no further singularities in 

the x.. 
I 

With this assumption, the asymptotic behaviour in, say, xA is 

governed by the singularities in XA which reflect, via the gamma funct- 

ions in (76) and its companions for the other regions, the singularities 

in JA,. JR, and JC. 

Taking this example further we find that for singularities in Jj at 

a,(t,) ’ 0, there are two terms in the leading asymptotic behaviour of A6 
, J 

a5 x A 
-f -ice with XA’ XB’ XC’ 

These two terms come from poles 

so 

tA’ t*, tc, and xB held fixed; set xC=O. 

in 
hA at aA or at aB(tB) + oC(tC). 

. 

A6 (xj ,tj.xA,xB) -- C-e 
ixA aA 

1 
‘A 

-t -im 
F1(xj ,tj .x,1 + 

x.,t.,xB fixed 
I 3 
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+ (_eiXA)“8(tU)+“C(tC) 
F2(xj ,tj ,x,1 . (77) 

The identification of two terms in the asymptotic behaviour in an azimuthal 

angle for A6 has been made in a paper by Low and coworkers. 14) Their 

definition of poles in helicity differs somewhat from ours, and their method 

of derivation is certainly remarkably dissimilar; however, their result is 

equivalent to (77). 

In the limit xA -+ -i- with xB, tj and Sj fixed the plane pA p;\ 

is “moving away” from the cluster of four momenta pB, p;i,’ pC, and pi. Since 

the inner product of pA or p;\ with any of these vectors is becoming 

infinite, while any of the inner products among these vectors is remaining 

finite, one may properly inquire why the tree graph of Figure 3 should be 

considered in this limit. That is, why not take a tree configuration where 

pB and pC and p;: and p;C , say, define a set of pairs for a partial wave 

expansion and thus encounter (-e 
ixA a((pB-pc)21 

) in the limit. They key to 

the answer is that as XA 
+ -im , xB, Cj, tj fixed, the quantities 

pA. (p,-p;) , pi* (p,-pi) , pAS (p,;P;) , and p,j,* (p,-pi) remain fixed ., This 

requirement among dot products singles out the pairing (p, pi), (p, pi) of 

Figure 3. 

Just a few words about the results in this section before we proceed 

to the single particle inclusive process. The limit (77) is the same as the 

limit in Eq. (30) if we choose a2(tB) = 0; that is if we take the residue 

of A 6 
at a spin zero pole in tB: We know that this limit on A3 does not 

occur in a physical region of A3 since once we take tg=m2 to reach the 

spin zero pole, we have A(tAJB,tC) ’ 0 and cannot make it negative by 

cant inuing in tA 
and 

5 
to negative values. Ilhen we let tA. tB, and 
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tc be continued to negative values such that A(tA,tB,tC) > 0,. then by our 

construction, the Sommcrfcld-Watson transform of (76) etc. is useful for 

yielding the asymptotic behaviour in the azimuthal angles xA and xb con- 

tinued to the y-boost angles x1 and x2 encountered in (52). The criterion 

for an azimuthal angle ‘as ymptotic limit to occur in a physical region of a 

multiparticle S-matrix element is that for some tree granh configuration 

there be a vertex of three spacelike momenta Qld2, and Q, such that 

A(Q2’ (2’ Q’) < 0. --IL.-2-3 The asymptotic limit of an azimuthal angle associated with 

this vertex is governed by singularities in the conjugate helicity as given 

by multiple Sommerfeld-Natson transforms such as (76). 

Finally, let us mention an elementary reason why there are two terms 

in the leading behaviour in x A + -i- as in (77). If we consider the vertex 

corresponding to a particle of mass $9 ” spin JA decaying at rest to 

Jt,, JB + Jt,, Jc moving along the z-axis, then the helicity X 
A 

is 

restricted to be less than the smaller of JA or JB + Jc by conservation 

of angular momentum. The gamma functions in the decay matrix element which 

yield this restriction, when continued in helicity and angular momentum, 

result in precisely the two terms ,of (77). Said in other words, one of 

the lessons of the multiple partial wave analyses is that the singularities 

in complex helicity are bounded by the maximum sense values allowed to 

ordinary helicity. 



.. 

-24- 

11’. Azimuthal Anqlc Limits in the Single Particle Inclusive Reaction 

IVe now propose to take the formalism we have built up for finding the 

location of helicity singularities in Sommerfeld-IVatson transforms of multi- 

particle amplitudes and apply it to an analysis of, the single particle 

inclusive distribution for pl+p3 -+ pi + anything. The regime of interest 

to us will be when the initial energy s = (pl+p3) 
2 

+ - while the momentum 

transfer t = (p, - Pi)2 and the missing mass fi2 = (P,+p3-pi)2 are held 

fixed. Ne will demonstrate first that this limit of the forward A6 can 

only be reached by taking an azimuthal angle to infinity.- As usual we will 

encounter, from each of the six regions of the Sommerfeld-Watson transform 

two terms in the asymptotic behaviour of A6 in this limit. One term in 

each limit will be shown to have no dependence on the missing mass, and thus 

only one of the possible terms from each region wiil contribute to the 

inclusive cross section which is extracted from the forward A6 by taking the 

absorptive part in 1V2. We will show that the term which survives in the 

S-+-- ) t, Ii2 fixed limit describes a Reggeon particle absorptive part .’ 

with maximum helicity flip in the “crossed” (with respect to \V2) channel. 10,lS) 

In order to discuss the kinematics of A6 appropriate to the inclusive 

reaction we must take tl = t2 = t and then let t3 + 0 from below. At the 

same time we must set pi = p2, and it will follow that pi = pS and 

Pi = Pl after that. 

We choose x3=0, as we always may, and letting tl = t2 = t, the 

y-rotation angles (41) and (42) which orient Q, and Q, in F3 become 

sin I31 = Jl - 5. = - sin 8 
4t 2 ’ .(7S) 

so e1 = -e2 = e , (79) 
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Writing out the vectors pi and p2 we see 

.pi = (EcoshClcoshX1, EsinhSlcos8 - qsin0, EcoshClsinhxl, 

-qcosB - EsinhClsinB) 9 

and p2 = (EcoshF,2coshx2, EsinhS2cosB - qsine, EcoshS2sinhx2, 

qcosE + EsinhS2sin0) , 

(80) 

(81) 

where i = /m2-t/4 arid q = -2. Equating these vectors yields 

x1 = x2 = xt (82) 

coshS1 = coshC2 , (83) 

cos&inhCl = cos6sinhF2 , (84) 

and 2qcosB = -EsinO(sinhS1 + sinhg2) . (85) 

as t3 * 0, ‘case goes to 0 and the requirement that (84) hold on the way to 

the limit (that is, (84) and its derivative with respect to 8 at e=O) means 

51 = t2 = c, (86) 

and sinhg = - z cot .@, (87) d-> 

which implies that in the limit t3 + 0, 6 + 0 * 

IVe have three variables left in the forward limit of A6. They are x, 

an azimuthal boost angle c3, a po1a.r boost angle, and t, a momentum 

transfer. The four vectors pi and Q. have become 1 

Q, = (0, J-t, 0, 01 , (88) . 

.Q, = (0, -6, 0, 0) , (89) 

Q, = (0, 0, 0, 0) 90) 
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G 
% Pl = (Ecoshx, 2 , Esinhx, 0) , (91) 

p2 =, (Ecoshx, e, Esinhx, 0) , (92) 

and p3 = (mcoshg 3 ,. ,rCnhC 3’ 0, 0) * ‘(93) 

The invariants s and IV2 may be expressed in terms of x , t, ,and 5 3 as 

5 = (p1+p3)’ = 2m2 4 2mtcbshX cash;’ - mfi sinhS3 , 
3 WI 

and Iv 
2 2 

= (pl+P3-Pi) = m2+t - 2mfi sinhS3. (95) 

The limit s + m , t. WL fixed can clearly be achieved only by x + --, E3, 

t fixed; that is, it is an azimuthal hngle limit in which no polar angle 

E becomes large. 1Ve have given, if not established, a rule in the discussion 

around Eq. (30) that one must employ the partial wave analysis dictated by 

one’s choice of polar and azimuthal angles to locate the singularities in 

helicity in the Sommerfeld-lVats.on transform which yield the azimuthal angle 

limit being considered., 

IVe return, therefore, to ‘the O(3) analysis of A6. for the tree graph 

of Figure 3. The following identification of variables for the forward A6 

is made with the help of (54) and (55): 

xA = X8 =ix ; xc= 0 9 (96) 

SA=cB=O ; SC = -is3 (97) 
. 

and t* = tg = -t ; t3=tc=o . (98) 

We know that in the Sommerfeld-Watson transform of each of the six regions 

(69)- (74) the singularities in .X reflect,.via the explicit kinematic gamma 

functions, singularities in the J’s. For the case we now adopt of poles in 

Jj at uj(tj)‘O. the region which gives the leading asymptotic bchaviour 

as x + -m is region III. The partial wave amplitude must be continued into 

. . 



-27- 

the right half plane for XA and XC, and the left, for hg. Furthermore, 

since X A 
= xB = ix, the asymptotic behaviour in x is governed by 

xc = XA - XB’ so let us eliminate AB in making the Sommerfeld-Watson 

transform which reads with forward kinematics 

A6 
Region III = _ dhA 

2i sinnhC fJ j 2 (2Jj+1) ’ 
dhC 

2isin?rhA 

x r(XA-JA)r(~A+JA+l)r(hC-JC)I’(~C+JC+l)r(XC-~A-JB) x 

x r(XC-XA+JB+l) -hA 
p 

xB 
,J (0) p- 

A JB 
(0) ate 

c (sinEC) x 

x C-e 
ixA Xc 

I MRALBRC (JA,XA; J,>l,-l;: Jc,Xc) . (99) 

We have argued that the partial wave coefficients M defined in this manner 

contain only poles and cuts in the Jj (dynamical singularities) and are 

regular in the Xj. 
-CQ 

In the limit x -t 6 there are two contributions to the asymptotic 

behaviour of AgRegion “I. The first comes from the hC pole in T(XC- JC) 

which is just the JC = aC(0) pole transferred to the XC plane. This con- 

tribution has its CC behaviour explicit since we must do th,e Jc integral 

around the a,(O) pole. The second leading contribution comes from the pair 

of gamma functions r(X, - JA) r(hC - XA - JB) and occurs at 

xc = aA + all(Q with hA = aA( XB = -aa( The c3 dependence 

is not specified here. We then read from (99) 

A6 
Region III 

(x,S3,t) -d C-e 
-x a,(O) ;y(O) 

1 
x -> - m 

P,~(~) (-i sinhS3) x 

c3,t fixed 
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cx (t)+crgW 
x FIW + ‘-e-X? A F2(53,t,XA=aA,XB=-“B)’ (100) 

rihere “1 and F2 are unknoun functions of the specified variables. From 

Equation (10) for aC(0) > 0 we find 

i sinhg3) = (coshS3) 
acm 

/2 
ac (0) 

r(ac(o) + 1) 9 (101) 

so noting 

es’ = s / m E coshS3 (1W 

in the limit we have taken, we learn that the first term of (100) has no 

dependence on 53L Changing over to s. lV2, and t we may rewrite the limit 

(100) as 

Region III y(O) ^ 

A6 (s, 1v2, t) - C-9 Fl(f) + 
5~ + m 

W2, t fixed 

uA(t)+ag(t) F2(H2J.‘hA = a*(t), hB=-“B(t)) 
t-51 

[+A “2(\V2,t,m2)] 
ai\ + “B(t) ’ (103) 

When we take the absorptive part in IV 
2 of this formula to extract the con- 

tribution to the inclusive cross section frdm region III, we pick up 

(-5) 
u*(t)+agW 

Abs 
IV2 t 

Every other cor.tribution to A6 

form (-s) 
+ac (0) 

F(t) or it has 

F2(lV2,t,XA = aA XB = -aB) 
(104) 

t* l’2(iV2,t,m2)] 

from the other five regions is either of the 

lower powers of s than (104). IVe thus reach 

the important conclusion that the leading contribution to the inclusive cross 

section in the limit s + m , 
2 

W , t fixed (as depicted in Figure 4). is 

just (104). Since F2 is proportional to the t3 channel amplitude for 

Ql (helicity aA) + Q, (helicity - ag) + p3 + (-p?), this is precisely what 

we expect. 10) 
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Our reaching this result lends strong support to three of the basic 

steps we have been carrying out: (1) Our assumption that the partial wave 

coefficients such as >,I 
RALBRC 

contain only dynamical singularities in the 

J .; 
I 

(2) our argument that the helicity singularities in a multiple Sommerfeld- 

Watson transform are, therefore, to be read off from the kinematic gamma funct- 

ions ; and (3) our rule that the partial wave analysis for which one defines 

the polar and azimuthal angles 5 and x is the one to employ when the 

azimuthal angle becomes asymptotic even though no polar angles become large. 

V. Discussion and Conclusions 

By considering the five and six point amplitudes in some detail we 

have developed a set of operational instructions for locating the singularities 

in helicity appearing in multiple Sommerfeld-Watson transformations of many 

particle amplitudes. These instructions have just been repeated, at the end 

of the last section where we also argued that the application of our procedures 

to the single particle inclusive process yields the proper answer. 

We have also argued that an azimuthal angle asymptotic limit of a many 

particle amplitude can occur in a physical region of that amplitude when one 

encounters in some tree graph a vertex where three spacelike momenta Ql, ,Q, 

and Q, meet with A(Qi, Qi, Q$ < 0. As we showed, following Reference 3, 

in this kinematic configuration an azimuthal z-rotation angle which is 

bounded in physical regions is replaced by a y-boost angle, x , which may 

lie anywhere along the real line. ’ 

In the two examples, AS and A6, we have treated, the covariance of 

a vertex with which the azimuthal angle was associated lead to a coupling of 

the singularities in the helicities entering the vertex. One may ask whether 
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in higher point functions somehow helicity singularities are not passed from 

one end of the process to the other, therefore, m~aking the singularity structure 

in helicity unspeakably complicated? IVe can see from the tree graph configurat- 

ion for A S given in Figure 5 that t?$s will not occur, and any helicity 

communicates only with the neighbouring helicities at any ,vertex. In the 

partial wave expansion of the graph in Figure 5 one encounters the product of 

rotation functions 

d& @,I d& J5 

1 2@2) da5,a; (es) d 
J3 
x 

3’ 
o(e,) dz4 o(e4) 

4> / 

where Ji and Bi are the angular momentum and polar angle associated with 

Qi. &variance at the vertices I and II require X5 = XI-12 and 1; = X4-X3 

respectively. However, except in the very special configuration where es = 0 

(that is, forward internal Reggeon scattering), there is no coupling of X1, 

say, with A 
3 

or X4. 

There is an amusing point here, however, for the analytic structure in 

%’ 
say, will reflect through the familiar kinematic gamma functions the 

singularity structure in J,(Q$, 
2 2 J,(Q,) and J,(Q,). Since the line 

carrying Q, or Q, could have been composed in a variety of ways from the 

P,. P;, ~3, P;, p4, and P:, and since the pole and cut structure in J2 or 

Js 
may depend on this, we see that the analytic structure in Xl may vary 

with the tree graph considered. An example of this occurs when we have 

internal quantum numbers. Suppose we choose the charges of the spinless 

particles, call them pions as in Figures 5 and 6, to be as in those figures. 

In each case the charge carried by Ql is +l, with even G parity. In 

Figure 5 Q, carries charge -1 with even G parity, and Q, carries 

charge 0 with G even. In Figure 6 qi carri.es charge 0 with G ‘odd, 

and @; carries charge +l, G odd. Clearly the singularities in al will 

be different for t!le two configurations. 
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A final set of remarks concerns signature, which we have avoided until 

now in order not to draw attention from the main tissue of analytic structure 

in helicity. The arguments of Goddard and White 2) and lVeis6) tel&s us to 

regard the Sommcrfcld-li’atson transforms 1”~ .have given as appropriate for 

signatured amplitudes which have only “right hand cuts” in the variables 

cosx and cos< , azimuthal and polar cosines. These arguments are exceeding- 

ly plausible but rest on an assumed analyticity structure in the cosines for 

multiparticle amplitudes. That analyticity could prove false. 

Let us see, however, what consequence such an addition of signature will 

have for us. To identify the signaturkd amplitudes consider, for example, our 

A5 as a function of zcei@ and x=cose 1’ We wish to write a double dispersion 

relation in z and x and use the definition of M 
R 

and M L given in (16) 

and (17) to find partial wave coefficients which can be continued in J and 

J. > the conjugate variables to 8L and +. We will write the formulae for 

MR only. Assuming then sufficient analyticity for A5 we canuse the 

dispersion relation?) 

+m 

A~(x,z) = 
I 

dx’ dz’ (x$:;lf;!-Z) , 
-co 

to write 
m 

M,(J,h) = 
i 

dz’ z,-x-l j dx’ $x1) x 

1 X cl 

(1061 

where we have started the x’ integration at x 0 and noted the symmetry 

63(-x) = - (-l)J-” Q:(x) for the “second’ kind functions” We see 
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that it is appropriate to continue separately J even and odd and h even 

and odd, so we define a hcliciiy signature TV = f and a usual J-signature 

TJ 
= k. and signatured partial wave coefficients 

m 

F,? =‘(J’,X) = j dz.’ zl-‘-l j $x~) x R 
1 x .o 

[p(x’,z’) - TJ Tcx P(-x’,z’)] - Ta[P(X’.-2’) - TJ TX PC-x’,z’)l 
> 

, (108) 

which coincides with MR(J,X) f& J seven (odd), ~~ = +l and X even 

(odd), -c~ = 51. 

We now perform a,Sommerfeld-Watson transform on the sum 

y ; (2J+l? zh PI; (x) MR(J,A) ;E;;;+;; 
X=0 J=X 

(109) 

which becomes 

-I dX 
2i sinnh I 

g T(X-3) r(h+J+l)(ZJ+l) x 

5 cJ 

-A 
~ fJa (xl i c-+ ; TpJ ] [ P,(-xl +2TJTa J 

(J,h). ’ (110) 

‘hSTJ 

The significant feature of (110) is that the product T 2x of J and X 

signatures aT79ears. In every simultaneous J and X continuation, then, 

we will find the product of T, and the associated T 
XL 

If we apply these considerations to the inclusive process discussed in 

the previous section, we see that since SA = CB = 0 we always encounter 

-A 
PJ@) (l+TJ TX) for these and so must have TV = ~~ for A and B. 

Writing the full contribution to 6 ARegion III which has a W2 discontinuity 

we have in the linit s + -, w2, t fixed 
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ARegion 1’11 ,-,, 
‘(TV 

1 
scA+eB A 

+ e-iPaA) 

6 
x 

s-- * 
rJA tJB 

sin ncr 

lV2,t fixed 
A 

-. 

+ incr 
(T;+e B, 

Y B 1 
c x 

sin na B 
ll eA+oB [sin(CC + z )I =JC 

Y I dJC 2ni I’(aA+eB-JC) I’(aA+aB+JC+1)(2JC+1) 
rJArJBTJC 

MR L R (J,,t) x 
ABC 

x (-cos (SC +;), + T mcrA+OB 
JA rJB ‘JC ‘JC bsKc + $1 , (1111 

where aA= aA( oB = a* (t’) , and because, hC = XA - XB we have noted 

rat ‘TiA Tag = TJ 
A tJB here’m 

Thus we see the result of Einhorn, et al. 17) 

that the signature factor for JC in this limit must be TJC ‘IJA TJB * It 

is curious that because of the special kinematics of the inclusive reaction, 

one does not employ the full signature structure of the six point function. 

In general, for configuration which is not forward, we now see, that the 

signature product rule given in Ref. 17 does not apply. IYhen in the JC 

integral Eq. (111) a specific pole contribution from J 
C = cc(O) is picked 

UP, the discontinuity in cos 5 
C 

(lVL) would contain the factor 

r(aA + aB - “$ sinir(a C - cx A - cB) 

II = (112) 
rbC +1-e 

A - “B) 

This is the famous factor insuring the vanishing of the “triple Pomeron 

vertexlO) and its presence in our treatment is a’consequence of the 

dynamical assumption we made that M (Jc,t) does not have any further 

singularities, let alone fixed poles. 
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Figure Captions 

Fig. 1. The tree graph appropriate for the partial wave analysis of the 

five point amplitude As. The asymptotic limit of A5 in the 

angle between the planes formed by pl p3 and p2 p5 is governed 

by the singularities in the helicity attached to the (Q, p4 Q,) 

vertex. 

Fig. 2. The tree graph defining the kinematics for the partial wave analysis 

of the six point amplitude A6 in the regime where the Qi are 

spacelike. If A(Q;, Q;, Q:) < 0, the asymptotic limit of an 

azimuthal angle (y-boost angle) associated with the (Q, Q, Q,) 

vertex can be reached in a physical region of A6; the single 

particle inclusive process is an example. 

Fig. 3. The tree graph appropriate for the partial wave expansion of A6 

when Figure 2 is analytically continued to the regime Q;, A;, Q; ' 0. 

Fig, 4. This shows the single particle inclusive process as the W2 dis- 

continuity of A6 at tl = t2 = t, t3 = 0. The limit s + m, t, 

\V2 fixed for this cross section involves only a y-boost angle 

becoming infinite. 

Fig. 5. A tree graph for A8 

Fig. 6. Another tree graph for As. 
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